1Luas permukaan tabung yang panjang jari-jari alasnya 9 cm, tinggi 22cm, dan /pi =3,14 adalah. a.876,06 cm² b.1.130,4cm² c.1.497,78cm² d.1.752,12cm² sebuah tabung 1.884cm². Jika tinggi tabung 20 cm dan pendekatan /pi=3,14 , maka volume tabung itu adalah. a.942cm³ b.10.157cm³ c.14.130³ d.28.260cm³
MatematikaGEOMETRI Kelas 9 SMPBANGUN RUANG SISI LENGKUNGLuas Permukaan tabung, kerucut, dan bolaLuas permukaan tabung yang panjang jari-jari alasnya 9 cm, tinggi 22 cm, dan pi=3,14 adalah .... Luas Permukaan tabung, kerucut, dan bolaBANGUN RUANG SISI LENGKUNGGEOMETRIMatematikaRekomendasi video solusi lainnya0123Sebuah kubah menara berbentuk setengah bola dengan diamet...0104Diketahui diameter sebuah bola 20 cm. Apabila pi=3,14 mak...0245Luas permukaan sebuah kerucut adalah188,4 cm^2. Jika panj...0158Panjang diameter alas tabung 14 cm dan tingginya 10 cm...Teks videojika kita memiliki soal seperti ini, maka untuk menentukan luas permukaan dari pada tabung kita dapat menggunakan rumus 2 * phi * r * r ditambah t r adalah jari-jari tabung dan t adalah tinggi tabung kita input nilai nilainya 2 dikalikan minyak kita gunakan 3,4 dikalikan r nya adalah 9 cm kemudian dikali r nya adalah 9 ditambah dengan tingginya 20 22 * 3,462 dikalikan 9 dikalikan 22 + 9 31 kita Sederhanakan maka kita kalikan ketiganya maka kita peroleh 752,2 cm2 jadi jawabannya adalah opsi D demikian sampai jumpa di pertanyaan berikutnya
Luaspermukaan tabung yang panjang jari jari alasnya 9cm, tinggi 22cm dan r:3,14 adalah - 3485892 adel42 adel42 14.09.2015 Matematika Sekolah Menengah Pertama terjawab • terverifikasi oleh ahli Luas permukaan tabung yang panjang jari jari alasnya 9cm, tinggi 22cm dan r:3,14 adalah terletak titik P di antara A dan B, sehingga AP : PB = 2 :
Ilustrasi kaleng soda bentuk tabung Foto UnsplashTabung menjadi salah satu bangun ruang sisi lengkung yang kerap ditemui dalam kehidupan sehari-hari. Beberapa contoh benda berbentuk tabung, yaitu drum, toples selai, gelas, botol minum, celengan, dan buku Mathemaics for Junior High School karya University of Maryland Mathematica Project 1959, tabung atau silinder adalah bangun ruang yang dibatasi oleh dua sisi bentuk lingkaran yang kongruen, berhadapan, dan sejajar serta satu sisi tegak berupa sisi terdiri dari beberapa unsur, di antaranyaMemiliki sisi atas tutup dan sisi bawah alas berbentuk lingkaran yang sama bentuk dan diameter tinggi dan jari-jari alas selimut permukaan tabung yang terdiri dari bidang yang meliputi sisi atas, sisi bawah, dan selimut Luas Permukaan TabungMengutip buku Matematika yang ditulis oleh Drs. Marsigit, dkk. 2006, luas permukaan tabung dapat dihitung dengan rumus sebagai berikutLuas Permukaan Tabung= Luas selimut tabung + Luas sisi atas tutup + Luas sisi bawah alasLuas Selimut Tabung = 2 πr x tLuas Permukaan Tabung = 2 πrt + rIlustrasi bentuk tabung Foto UnsplashContoh Soal Luas Permukaan TabungPanjang jari-jari alas sebuah tabung adalah 7 cm dan tingginya adalah 10 cm. Tentukan luas permukaan tabung!Panjang selimut tabung = keliling lingkaran alas tabungLuas selimut tabung = πr x tLuas permukaan tabung = 2 πr t+rJadi, luas permukaaan tabung adalah 748 tabung memiliki jari-jari sebesar 10cm. Jika tingginya 30 cm dan π = 3,14, hitung luas permukaannya!Luas permukaaan tabung = 2π r t + r= 2 x 3,14 x 10 x 30 + 10Jadi, luas permukaannya adalah cm2.
Sebuahpipa air berbentuk tabung dengan jari-jari 2,1 cm dan panjang 28 cm. Jika pipa air tersebut berlubang pada kedua ujungnya, tentukan luas permukaan pipa tersebut. Latihan 2.1 pot bunga tanpa tutup tersebut akan dicat pada sisi samping dan alasnya, tentukan luas permukaan pot bunga yang akan dicat. Bangun Ruang Sisi Lengkung 53
1. Tabung memiliki sisi berbentuk lingkaran sebanyak... buah a. Satu b. Dua c. Tiga tabung memiliki sisi berbentuk lingkaran pada sisi alas dan sisi atas. Jadi jawaban yang tepat adalah B 2. Jaring-jaring tabung yang benar adalah... Pembahasan mari kita perhatikan satu persatu a. Jaring-jaring tersebut dapat membentuk tabung b. Jaring-jaring tersebut tidak dapat membentuk bangun ruang c. Jaring-jaring tersebut membentuk bangun kerucut d. Jaring-jaring tersebut tidak dapat membentuk bangun ruang Jadi, jawaban yang tepat adalah A 3. Pernyataan berikut berkaitan dengan kerucut. Pernyataan yang salah adalah... a. Kerucut memiliki alas berbentuk lingkaran b. Kerucut memiliki satu rusuk c. Kerucut memiliki atap berbentuk lingkaran d. Garis pelukis kerucut menghubungkan titik puncak dengan titik-titik pada lingkaranPembahasan ciri-ciri kerucut adalah a. Memiliki alas berbentuk lingkaran jawaban A benar b. Memiliki satu buah rusuk jawaban B benar c. Garis pelukis pada kerucut menghubungkan titik puncak dengan titik-titik pada lingkaran jawaban D benar Jadi, jawaban yang tepat adalah C 4. Perhatikan gambar kerucut berikut ini! Yang merupakan garis pelukis adalah... a. KL b. MN c. NL d. KMPembahasan mari kita bahas satu persatu opsi di atas a. KL diameter b. MN tinggi c. NL jari-jari d. KM garis pelukis Jadi, jawaban yang tepat adalah D 5. Perhatikan gambar berikut! Yang merupakan diameter kerucut adalah... a. AC dan BO b. BD dan CO c. AC dan TB d. BD dan ACPembahasan mari kita bahas masing-masing garis pada gambar di atas a. AC diameter b. BO jari-jari c. BD diameter d. CO jari-jari e. TB garis pelukis BD dan AC merupakan diameter. Jadi, jawaban yang tepat adalah D 6. Perhatikan gambar kerucut berikut! Ruas garis XP adalah... a. Jari-jari b. Diameter c. Garis pelukis d. Garis tinggiPembahasan XP menghubungkan titik puncak dengan alas kerucut secara tegak lurus. Jadi, XP adalah garis tinggi. Jawaban yang tepat adalah D. 7. Banyaknya sisi dan rusuk berturut-turut dari gambar di bawah adalah... a. 4 dan 3 b. 4 dan 2 c. 3 dan 3 d. 3 dan 2Pembahasan Banyaknya sisi 3, yaitu selimut kerucut, selimut tabung, dan alas tabung. Banyaknya rusuk 2, pada batas antara kerucut dan tabung dan alas tabung Jadi, jawaban yang tepat adalah D. 8. Bangun ruang yang mempunyai satu sisi berupa bidang lengkung, satu titik pusat, dan tinggi sebesar diameternya adalah... a. Kerucut b. Bola c. Tabung d. BalokPembahasan mari kita bahas opsi di atas a. Kerucut memiliki dua sisi b. Bola memiliki satu sisi c. Tabung memiliki tiga sisi d. Balok memiliki enam sisi Jadi, jawaban yang tepat adalah B 9. Sebuah tabung mempunyai jari-jari 10 cm dan tinggi 20 cm. Luas selimut tabung tersebut adalah... a. 125,6 cm2 b. 628 cm2 c. cm2 d. cm2Pembahasan pada soal di atas diketahui r jari-jari = 10 cm t tinggi = 20 cm Rumus untuk mencari luas selimut tabung adalah L = 2πrt atau L = πdt L =2 πrt = 2 x 3,14 x 10 x 20 = cm2 Jadi, jawaban yang tepat adalah C 10. Sebuah tabung mempunyai jari-jari 5 cm dan tingginya 2 kali panjang jari-jari. Luas permukaan tabung tersebut adalah... Pembahasan dari soal di atas diketahui Jari-jari r = 5 cm Tinggi t = 2 x r = 2r cm Rumus untuk mencari luas permukaan tabung adalah L = 2 luas lingkaran + luas selimut tabung Jadi, jawaban yang tepat adalah C 11. Sebuah tabung diameter alasnya 20 cm π=3,14 dan tingginya 25 cm. Luas seluruh permukaan tabung adalah... a. cm2 b. cm2 c. cm2 d. cm2Pembahasan dari soal di atas diketahui Diameter d = 20 cm, jari-jari r = 10 cm Tinggi t = 25 cm Rumus untuk mencari luas permukaan tabung adalah L = 2 luas lingkaran + luas selimut tabung Jadi, jawaban yang tepat adalah B 12. Sebuah tabung berdiameter 28 cm dengan tinggi 26 cm. Luas seluruh permukaan tabung adalah... π=22/7 a. 880 cm2 b. cm2 c. cm2 d. cm2Pembahasan dari soal di atas diketahui Diameter d = 28 cm, jari-jari r = 14 cm Tinggi t = 26 cm Rumus untuk mencari luas permukaan tabung adalah L = 2 luas lingkaran + luas selimut tabung Jadi, jawaban yang tepat adalah C 13. Sebuah tabung jari-jari alasnya 35 cm dan tingginya 10 cm. Luas seluruh permukaan tabung adalah... π=22/7 a. cm2 b. cm2 c. cm2 d. cm2 Pembahasan dari soal di atas dapat kita ketahui Jari-jari r = 35 cm Tinggi t = 10 cm Rumus untuk mencari luas permukaan tabung adalah L = 2 luas lingkaran + luas selimut tabung Jadi, jawaban yang tepat adalah D 14. Jika r = jari-jari dan t = tinggi kerucut, panjang garis pelukis s pada kerucut adalah... Pembahasan perhatikan ilustrasi di bawah ini Perhatikan segitiga siku-siku yang terbentuk. Untuk mencari panjang garis pelukis s kita menggunakan rumus phytagoras Jadi, jawaban yang tepat adalah A 15. Sebuah kerucut memiliki jari-jari alas 10 cm dan panjang garis pelukis 16 cm. Luas selimut kerucut tersebut adalah... a. 502,4 cm2 b. 402,4 cm2 c. 324 cm2 d. 314 cm2Pembahasan dari soal di atas dapat kita ketahui Jari-jari r = 10 cm Garis pelukis s = 16 cm Rumus untuk mencari luas selimut kerucut adalah L = πrs L = 3,14 x 10 x 16 = 502,4 Jadi, jawaban yang tepat adalah A 16. Panjang diameter alas sebuah kerucut 14 cm. Jika tingginya 24 cm, luas seluruh permukaan kerucut adalah... a. 400 cm2 b. 429 cm2 c. 682 cm2 d. 704 cm2Pembahasan berdasar soal di atas, diketahui Diameter d = 14 cm, jari-jari r = 7 cm Tinggi t = 24 cm Rumus untuk mencari luas permukaan kerucut adalah L = luas lingkaran + luas selimut kerucut Jadi, jawaban yang tepat adalah D 17. Jika bentuk bumi seperti bola dengan jari-jari km, luas kulit bumi adalah... km2 Pembahasan pada soal di atas diketahui Jari-jari r = km Rumus untuk mencari luas permukaan bola karena bumi berbentuk seperti bola adalah Jadi, jawaban yang tepat adalah D 18. Luas permukaan bola yang berdiameter 21cm dengan π=22/7 adalah... a. 264 cm2 b. 462 cm2 c. cm2 d. cm2Pembahasan dari soal di atas diketahui Diameter d = 21 cm, jari-jari r = 10,5 cm Rumus untuk mencari luas permukaan bola adalah Jadi, jawaban yang tepat adalah C 19. Gambar di bawah ini adalah bola di dalam tabung. Jika jari-jari 7 cm, luas seluruh permukaan tabung adalah... a. 343π cm2 b. 294 π cm2 c. 147 π cm2 d. 49 π cm2Pembahasan dari soal diketahui Jari-jari r = 7 cm, berarti tinggi t = 2r = 2 x 7 = 14 cm Rumus untuk mencari luas permukaan tabung adalah L = 2 luas lingkaran + luas selimut tabung Jadi, jawaban yang tepat adalah B 20. Perhatikan gambar benda padat berbentuk tabung dan setengah bola berikut! Luas permukaan benda tersebut adalah... π=22/7 a. 702 cm2 b. 802 cm2 c. 902 cm2 d. cm2Pembahasan dari soal diketahui Jari-jari r = 7 cm Tinggi t = 10 cm L = luas ½ bola + luas tabung tanpa tutup Jadi, jawaban yang tepat adalah C 21. Tempat sampah berbentuk tabung dan tutupnya berbentuk setengah bola seperti tampak pada gambar. Luas seluruh permukaan tempat sampah tersebut adalah... a. cm2 b. cm2 c. cm2 d. cm2Pembahasan dari soal di atas diketahui Tinggi t = 20 cm Jari-jari r = 27 cm – 20 cm = 7 cm L = luas ½ bola + luas tabung tanpa tutup Jadi, jawaban yang tepat adalah C 22. Perhatikan gambar gabungan kerucut dan tabung berikut! Luas permukaan bangun tersebut adalah... a. 704 cm2 b. cm2 c. cm2 d. cm2Pembahasan dari soal di atas dapat diketahui Jari-jari r = 7 cm Tinggi tabung tt = 12 cm Tinggi kerucut tk = 36 cm – 12 cm = 24 cm L = luas selimut kerucut + luas tabung tanpa tutup = πrs + luas lingkaran + luas selimut tabung Jadi, jawaban yang tepat adalah C 23. Sebuah peluru terbentuk dari gabungan tabung dan kerucut seperti pada gambar. Luas permukaan peluru tersebut adalah... ... π=22/7 a. 29,04 cm2 b. 23,10 cm2 c. 18,04 cm2 d. 9,24 cm2Pembahasan dari soal diketahui Diameter d = 1,4 cm, jari-jari r = 0,7 cm Tinggi tabung tt = 5 cm Tinggi kerucut tk = 2,4 cm L = luas selimut kerucut + luas tabung tanpa tutup = πrs + luas lingkaran + luas selimut tabung Jadi, jawaban yang tepat adalah A 24. Gambar berikut menunjukkan sebuah benda yang dibentuk dari sebuah tabung dan sebuah kerucut. Luas permukaan benda tersebut adalah... π=3,14 a. 648,24 cm2 b. 658,24 cm2 c. 668,24 cm2 d. 678,24 cm2Pembahasan dari soal diketahui Diameter d = 12 cm, jari-jari r = 6 cm Tinggi tabung tt = 10 cm Tinggi kerucut tk = 18 cm – 10 cm = 8 cm L = luas selimut kerucut + luas tabung tanpa tutup = πrs + luas lingkaran + luas selimut tabung Jadi, jawaban yang tepat adalah D 25. Sebuah lampion berbentuk gabungan kerucut dan belahan bola. Panjang lampion 15,5 cm dan diameternya 7 cm. Bila π=22/7, luas permukaan lampion tersebut adalah... a. 253,0 cm2 b. 247,5 cm2 c. 214,5 cm2 d. 209,0 cm2Pembahasan pada soal dapat kita ketahui Diameter d = 7 cm, jari-jari r = 3,5 cm Tinggi kerucut t = 15,5 – 3,5 = 12 cm L = luas selimut kerucut + luas setengah bola Jadi, jawaban yang tepat adalah C Sekian dulu belajarnya dengan kakak... ditunggu soal-soal dan pembahasan berikutnya ya...
MencariLuas Permukaan Tabung Jika Diketahui Jari-jari dan Tingginya de eka sas. Tags. Volume dan Luas Sebuah tabung memiliki jari-jari alas 7 cm dan tinggi 10 cm. Berapakah luas seluruh permukaan tabung tersebut? Nah, perhatikan langkah demi langkah dalam menyelesaikan soal ini.. Jadi luas permukaan tabung yang kita cari adalah 748 cm 2.
Jakarta - Rumus volume tabung dipelajari dalam pelajaran matematika sebagai bagian dari bangun ruang. Cara menghitung volume tabung bisa dilakukan dengan rumus. Seperti apa rumus volume tabung?Volume tabung bisa dihitung ketika jari-jari, luas alas, atau tinggi sebuah tabung telah diketahui. Luas alas tabung sendiri berbentuk lingkaran sehingga memiliki rumus yang sama dengan rumus luas volume tabung, contoh soal, dan cara Volume TabungV = luas alas x tinggiPerlu diperhatikan bahwa luas alas tabung merupakan lingkaran jadi rumus luas alas sama dengan rumus lingkaran. Rumus volume tabung menjadiV = πr2 x tKeteranganV = volume tabungπ = 22/7 atau 3,14R = jari-jari alas tabungt = tinggi tabungVolume tabung memiliki satuan kubik. Misal cm3, m3, dan Soal Penerapan Rumus Volume TabungBerikut ini contoh soal yang dikutip dari buku "Belajar Matematika Aktif dan Menyenangkan" oleh Wahyudin Djumanta dan Dwi Susanti dan buku "Matematika" oleh Wahyudin Sebuah tabung diketahui jari-jarinya 6 cm, tingginya 7 cm, dan pi = 22/7. Hitunglah volume tabung volume tabung adalah V = πr2 x tV = 22/7 x 62 x 7= 22/7 x 252= 792 cm3Jadi, volume tabung tersebut adalah 792 cm kubik atau 792 cm32 Sebuah tabung mempunyai jari-jari alas = r cm dan tingginya t cm. Jika jari-jarinya bertambah menjadi 2r cm, hitunglaha. Berapakah perubahan volumenya?b. Jika volume bertambah 300 cm³, berapa volume tabung mula-mula?Jawaba. Volume tabung mula-mula = πr2 t Volume tabung sekarang = π x 2r2 x t = π x 4r2 x tc= 4πr2 tJadi, perubahan volume tabung volume tabung sekarang - volume tabung mula-mula= 4πr2 t - πr2 t = 3πr2 tb. Perubahan volume tabung = 3πr2 t = 300 cm³ , maka πr2 t = 100 cm³Jadi, volume tabung mula-mula = 100 Diketahui sebuah tangki air berbentuk tabung yang tingginya 200 cm. Tabung tersebut dapat menampung air sampai penuh sebanyak π = 3,14, hitunglaha. luas alas tangki tersebutb. panjang jari-jari alasnyaPenyelesaiana. Volume tangki = liter = dm³ = tangki = 200 volume tabung, V = luas alas x tinggi = luas alas x 200luas alas = 200 = luas alasnya Rumus luas alas, L = = 3,14 x r²r² = = 50Jadi, panjang jari-jari alas tangki adalah 50 rumus volume tabung beserta contoh dan cara menghitungnya. Selamat belajar detikers! Simak Video "Google Sediakan 11 Ribu Beasiswa Pelatihan untuk Bangun Talenta Digital" [GambasVideo 20detik] erd/erd
Hasilpencarian yang cocok: Diketahui suatu tabung dengan diameter 14 cm Dan tingginya 15 tersebut Walsh. bikin Jalan yaa - 7161800. Top 2: Sebuah tabung memiliki diameter 14 cm dan tinggi 15 cm. Berapakah
2Berapakah luas permukaan tabung yang panjang jari-jarinya 10 cm dan tingginya 20 cm? Penyelesaian: L = 2 x π x r x (r + t) L = 2 x 3,14 x 10 x (10 + 20) L = 62,8 x 30. L = 1.884 cm². Jadi, luas permukaan tabung adalah 1.884 cm². Demikianlah pembahasan mengenai cara menghitung volume tabung dan luas permukaannya.
kelilingdan luas persegi panjang! Keliling yang sama dari soal a dibuat persegi panjang baru dengan panjang persegi panjang 1 1/2 dari lebarnya. Maka hitung luas persegi panjang tersebut. Jawaban: K = 2(p + l) = 2(18 + 7) = 2 x 25 = 50 cm. L = p x l = 18 x 7 = 126 cm2. Jadi, keliling persegi panjang tersebut adalah 50 cm dan luas 126 cm2
. 7scq3dsh4d.pages.dev/3907scq3dsh4d.pages.dev/1897scq3dsh4d.pages.dev/2367scq3dsh4d.pages.dev/3327scq3dsh4d.pages.dev/2517scq3dsh4d.pages.dev/3027scq3dsh4d.pages.dev/1597scq3dsh4d.pages.dev/3497scq3dsh4d.pages.dev/374
luas permukaan tabung yang panjang jari jari alasnya 9 cm